DE LANGE S., BOGAERT M., DE BOCK K., VAN DEN POEL D., (2025). The dual quest for interpretability and performance in credit scoring via spline-rule ensembles.
The Belgian Operational Research Society, 144-145
BERK AYTAÇ E., OZOGUR-AKYUZ S., DE BOCK K., (2024). Interpretable Ensemble Learners for Explainable Business Analytics.
PHAN T. H. M., COUSSEMENT K., DE BOCK K., DE CAIGNY A., (2022). Modeling with Hybrid Segmentation Methods: A Statistical Library for R and Python.
DE BOCK K., (2021). Spline-Rule Ensemble Classifiers for Comprehensible Marketing and Risk Analytics.
DE BOCK K., DE CAIGNY A., COUSSEMENT K., (2021). A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees (EJOR 2018): A review and update (invited talk).
DE BOCK K., (2021). Pursuing Interpretability in Business Analytics with Spline-Rule Ensemble Models.
DE CAIGNY A., COUSSEMENT K., DE BOCK K., (2020). Customer Life Event Prediction Using Deep Learning.
DE BOCK K., (2020). Controlling for clicks: Integrating Digital metrics in Multichannel Retail Chain Store Efficiency Analytics.
DE CAIGNY A., COUSSEMENT K., DE BOCK K., (2019). Customer Life Event Prediction.
DE BOCK K., COUSSEMENT K., DE CAIGNY A., CIOBANU C., (2019). Integrating E-commerce Indicators in Multichannel Retail Chain Store Efficiency Analyses: A Robust Two-stage DEA Approach.
COUSSEMENT Kristof, DE BOCK K. W., CIOBANU Cristina, (2018). Efficiency in multi-channel retail chain store: a two-stage DEA approach with environmental factors and e-commerce indicators.
COUSSEMENT Kristof, DE BOCK K. W., DE CAIGNY Arno, (2018). Integrating textual information in customer churn prediction models: A deep learning approach.
DE BOCK K. W., KARADAYI ATAS Pinar, OZOGUR-AKYUZ Süreyya, (2018). A Novel Ensemble Pruning Approach for ANN-based Churn Prediction Ensemble Models.
CIOBANU Cristina, COUSSEMENT Kristof, DE BOCK K. W., (2018). A two-stage DEA approach for multi-channel retail chain store efficiency analysis.
GEUENS Stijn, DE BOCK K. W., COUSSEMENT Kristof, (2018). Beyond clickthrough rate: measuring the true impact of personalized e-mail product recommendations.
COUSSEMENT Kristof, DE BOCK K. W., DE CAIGNY Arno, (2018). Leaf modeling: An application in customer churn prediction.
COUSSEMENT Kristof, DE BOCK K. W., GEUENS Stijn, (2018). An Evaluation Framework for Collaborative Filtering on Purchase Information in Recommendation Systems.
DEBRULLE Jonas, STEFFENS Paul, DE WINNE S., DE BOCK K. W., MAES Johan, SELS Luc, (2018). Exploring the deeper grounds of new venture performance: Adopting rule ensembles to identify configurations of founder resources, business strategy, and environmental conditions.
COUSSEMENT Kristof, DE BOCK K. W., DE CAIGNY Arno, (2017). A New Algorithm for Segmented Modeling: An Application in Customer Churn Prediction.
GEUENS Stijn, COUSSEMENT Kristof, DE BOCK K. W., (2016). Towards better online personalization: a framework for empirical evaluation and real-life validation of hybrid recommendation systems.
DE BOCK K. W., (2016). Enhancing rule ensembles with smoothing splines and constrained feature selection: an application in bankruptcy prediction.
DE BOCK K. W., (2015). The Black Box Revelation: An Empirical Evaluation of Rule Ensembles for Bankruptcy Prediction.
GEUENS Stijn, COUSSEMENT A., DE BOCK K. W., (2015). Integrating Behavioral, Product, and Customer Data in Hybrid Recommendation Systems Based on Factorization Machines.
DE BOCK K. W., (2015). Multi-Criteria-Optimized Rule Extraction For Artificial Neural Networks and Its Application In Customer Scoring.
BAUMANN Annika, LESSMANN Stefan, COUSSEMENT Kristof, DE BOCK K. W., (2015). Maximize what matters: Predicting customer churn with decision-centric ensemble selection.
COUSSEMENT Kristof, DE BOCK K. W., GEUENS Stijn, (2014). Evaluating Collaborative Filtering: Methods within a Binary Purchase Setting.
DE BOCK K. W., LESSMANN Stefan, COUSSEMENT Kristof, (2014). Multicriteria optimization for cost-sensitive ensemble selection in business failure prediction.
DE BOCK K. W., (2013). Deploying Dynamic Ensemble Selection To Tackle Concept Drift in Predictive Customer Analytics.
DE BOCK K. W., DEBRULLE Jonas, DE WINNE S., SELS Luc, (2013). Getting Off On The Right Foot: Identifying Persistent Configurations Of Initial Resources, Strategy And Environment That Enable Start-Ups To Achieve A Sustainable Competitive Advantage.
DE BOCK K. W., COUSSEMENT Kristof, (2012). Remedying the Expiration of Churn Prediction Models with Multiple Classifier Algorithms.
LESSMANN Stefan, DE BOCK K. W., COUSSEMENT Kristof, (2012). Ensemble Selection for Churn Prediction in the Telecommunications Industry.
DE BOCK K. W., VAN DEN POEL Dirk, (2011). Strategies for Extracting Knowledge from Ensemble Classifiers Based on Generalized Additive Models.
DE BOCK K. W., VAN DEN POEL Dirk, (2010). Ensemble Classification based on Generalized Additive Models.
DE BOCK K. W., VAN DEN POEL Dirk, (2010). Customer Churn Prediction using Ensemble Classifiers based on Generalized Additive Models.
DE BOCK K. W., VAN DEN POEL Dirk, (2010). Ensembles of probability estimation trees for customer churn prediction.
DE BOCK K. W., VAN DEN POEL Dirk, (2009). Demographic Classification of Anonymous Web Site Visitors Using Click Stream Information: A Practical Method for Supporting Online Advertising.